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We consider a space-fractional wave equation with a singular mass term depending on the position and
prove that it is very weak well-posed. The uniqueness is proved in some appropriate sense. Moreover,
we prove the consistency of the very weak solution with classical solutions when they exist. In order to
study the behaviour of the very weak solution near the singularities of the coefficient, some numerical
experiments are conducted where the appearance of a wall effect for the singular masses of the strength
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1. Introduction

In this work we investigate the Cauchy problem
Upe (£, X)+(=A)*u(t, x)+mx)u(t, x)=0, (t,x)e(0, T|xRY, (11)
u(0,x) = ug(x), u(0,x)=1uq(x), xeRY, :
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where the spatially dependent coefficient m indicates the mass
and the differential operator (—A)“ stands for the fractional Lapla-
cian. When o =1 and the mass is constant, the equation in
(1.1) reduces to the well known Klein-Gordon equation which
plays a very important role in modelling many problems in clas-
sical and quantum mechanics, solitons and condensed matter
physics.

Because of the non-local nature of the fractional derivatives, the
fractional generalization of partial differential equations have been
found to be very accurate to model real-world problems (see for
instance [1-5]), while in the near past, they were thought to be
the subject of the pure mathematics. Consequently, considerable
attention has been given to the solution of fractional partial dif-
ferential equations of physical interest. An important one of these
equations is the fractional Klein-Gordon equation which has been
generalized along two lines: one is to include a position depen-
dent mass and the second is to use fractional derivatives instead
of integer order derivatives. In the present paper, a space-fractional
generalization of the Klein-Gordon equation with a position depen-
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dent mass is considered by replacing the classical Laplacian by the
fractional one.

The study of analytical and numerical solutions of the space
and/or time-fractional Klein-Gordon equation has been investi-
gated considerably in the last years by many authors, we cite for
instance [6-18] to mention only few of many recent publications.
We also cite [19-22] where the authors consider the case when the
mass term depends on the position and we refer to [23,24] where
the fractional Laplacian is introduced. Our aim in this work is to
contribute to the study of the well-posedness of the Cauchy prob-
lem (1.1) where we allow the spatially dependent coefficient m to
be singular. This needs to give a meaningful notion of solution,
since in the case of distributional data, the multiplication in the
equation in (1.1) doesn’t make sense (see [25]) and thus the prob-
lem can not be formulated. In this context, the authors in [26] in-
troduced the concept of very weak solutions to the study of second
order hyperbolic equations with irregular coefficients and was later
applied in [27-29] for different physical models. We want here to
apply it for our considered model in order to show its wide appli-
cability. We note here that our intention to consider irregular coef-
ficients is physically motivated by the fact that in the microscopic
scale, e.g. in the theory of fluids, the mass behaves like distribu-
tions [30].

As mentioned above we want to study the well-posedness in
the very weak sense of the Cauchy problem (1.1). The uniqueness
is proved in an appropriate sense. Moreover, we prove the consis-
tency of the very weak solution with the classical ones when they
exist. The mass coefficient is spatially dependent, it is our task to
do numerical experiments in order to study the behaviour of the
very weak solution near the singularities of the coefficient.

The leading objective of the present investigation is to con-
tribute to the study of the well-posedness of the the space-
fractional Klein-Gordon equation with a singular mass term using
the recently introduced concept of very weak solutions. The ad-
vantage in using this concept is that we are allowed to consider
coefficients with strong singularities, e.g. the Dirac delta function
and its powers. Another aim is to show that the concept is easy to
use in applications.

2. Main results

For « > 0 and d € N, we investigate the Cauchy problem for the
fractional Klein-Gordon equation

Uge (t, X) + (= A)?u(t, x) + mx)u(t,x) =0, (t,x) € (0,T] x R4,
u(0,x) = ug(x), u:(0,x) =u;(x), xeRL

(2.1)

Here, the function m is supposed to be non-negative and singular.
In the regular situation, i.e. in the case when the coefficient m is a
regular function we have the following lemma.

To start with, let us define some notions and notations that we
use throughout this paper. Firstly, the notation f < g means that
there exists a positive constant C such that f < Cg. Secondly, the
fractional Sobolev space HY (RY) is defined as follows : H¥(RY) =
{ue 2@ ¢ ullo < +o0). where [Julle = llullz + (~2) ul»
and by (—~A)%* we mean the standard definition of the fractional
Laplacian in terms of the Fourier transform, that is, (—A)%u=
F1(J€]22 (Fu)) for all £ € RY. We refer to [31] and [32] for more
details and alternative definitions of the fractional Laplacian and
the fractional Sobolev spaces.

We will also use the following notation:

luct, I == lluct, lae + ldeudt, )l

Lemma 1. Let mel®®Y) and m=>0. Suppose that uge
H*(R?Y) and u; € [2(RY). Then, there is a unique solution
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u e C([0, T]; H*(RY)) nC1 ([0, T]; L2(R%)) to (2.1), and it satisfies the
estimate
lluct, HII? < A+ Imlle)[NuallE + luollfe |- (2.2)

Proof of Lemma 1.. Multiplying the Eq. (2.1) on both sides by u;

and integrating, we get
Re(dZu(t,-), deu(t,-)) 2 + Re((—=A)*u(t, ), deu(t, )2 (23)
+Re(m()u(t, ), du(t, ) = 0, '

where (., -),> is the inner product of L2 (RY).
Easy calculations show that

Re(@2u(t. ). deu(t, )}z = 5 Be{du(t. ), du(t. )y

1 o o

Re{(=2)%u(t, -), deu(t, -))Lz=§3f((—A)7U(t, D, (=A)zu(t, ),
and

1
Re(m(yu(t. ). eu(t. )i = 58 (m* (Yu(t, ). m? (Ju(t. )ee.
Let us denote by
E(t) := [[0eu(t. )% + 1 (= A) Fuce. )% + [m? (u(e. )12
the energy functional of the system (2.1). From (2.3) it follows that
0:E(t) =0, and thus E(t) = E(0). By taking in consideration that
[m2 Upl|?, can be estimated by ||m% uoll?, < lm I llug |12, it fol-
lows that

IBeuce, ) < (luallf + 1 (=2) 2uoll?, + Imlli~lluoliZ).  (24)

I(=2) Fut, B S (w2411 (=A) Fuo I +lImlli~ lluol17,), (2.5)
and

1 o
Imz (u(e, HIE < (lwllf + 11(=2) Fuoll+lImlli~ luolI%)- (2.6)

Hence, the desired estimates for d;u(t,-) and (—A)%u(t, .) are
proved. Let us now estimate u. Applying the Fourier transform to
(2.1), the problem can be rewritten as a second order ordinary dif-
ferential equation

G (6, &) + [E1220(¢, §) = f(£.£), (2.7)

with the initial conditions @(0, &) =1g(§) and @; (0, &) = 4 (€).
Here f ii, denote the Fourier transform of f and u in the spacial
variable and f(t,x) := —m(x)u(t,x). We note that in (2.7), we see
f as a source term.

By solving first the homogeneous equation and by application
of Duhamel’s principle (see, e.g. [33]), we get the following repre-
sentation of the solution

i1 (§)

i(t, &) = cos (t|€|*)do(§) + TEe
(2.8)

Csin((t-5)I§]*) 2
+/0 Wf(s’é)ds-

Taking the L2 norm in (2.8) and using the following estimates: 1)
|cos(t|€|®)| <1, for t € [0,T] and & e RY, 2) |sin(t|£]¢)| <1, for
large frequencies and ¢t € [0, T] and, 3) | sin(t|]%)| < t|§|* < T|&|%,
for small frequencies and t € [0, T], we get that

sin (t[§]%) -

t -~
e I < Ndollf + ik I17: +f0 £ (s, )1 ds.

By Parseval-Plancherel formula we arrive at

T
lluct, I < lluollf + llu I, +/0 Im(ucs. )l ds.
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Using the estimate (2.6) and taking in consideration that the last
term in the above estimate can be estimated by ||[m(-)u(t, )| <

1 1
Imll 2 lm2u(t, )l 2. we get

lue, HIE < A+ Imlle)[luollfe + llurliz.]- (2.9)

The estimate (2.2) follows by summing the estimates (2.4),
(2.5) and (2.9), ending the proof. O

2.1. Very weak solutions: existence

Here, we consider an irregular case when the mass term m of
the Eq. (2.1) has strong singularities, namely, §-function or “§2-
function” like behaviours. In what follows, we will understand a
multiplication of distributions in the sense of the Colombeau alge-
bra [34].

Now we introduce a notion of the very weak solution to the
Cauchy problem (2.1) and prove the existence result. We start by
regularising the coefficient m using a suitable mollifier ¢ gen-
erating families of smooth functions (mg)., namely, mg(x) = m %
WYe (x), where ¥ (x) = e~94y (x/€) and ¢ € (0, 1]. The function v is
a Friedrichs-mollifier, i.e. ¥ € C3° RY), ¥ >0and [y =1.

Assumption 1. We make the following assumption on the regular-
isation (mg). of the coefficient m: there exist Ny e Ny and C > 0
such that

[mellp~ < Ce™o, (2.10)
for all € € (0, 1].

We note that by the structure theorems of distributions, such
assumption is natural and is satisfied, e.g, for m € D’. Let us give
some examples.

Example 1. Let m(x) = 8g(x). Then, we have mg(x) = mx* ¥z (x) =
g4y (e71x) < Ce~. Moreover, for m(x) = §2(x), one can define
me (x) = e~ 2442 (e 1x) < Ce~24.

Definition 1 (Moderateness).

(i) A net of functions (g¢)¢ is said to be L>*-moderate, if there
exist N € Ny and ¢ > 0 such that

llgelli~ < ce™™.

(ii) A net of functions (ug)e from C([0, T]; H*) nC ([0, T]; L2) is
said to be C1-moderate, if there exist N € Ny and ¢ > 0 such
that

sup |lug(t, )| < ce™N.

te[0,T]

Remark 1. By the Assumption (2.10), m, is L*°-moderate in the
sense of the last definition.

Definition 2 (Very Weak Solution). Let (ug, u;) € H* (R%) x [2(R?).
Then the net (ug)e € C([0, T]; H*(R?)) nC1([0, T]; L2(RY)) is a very
weak solution to the Cauchy problem (2.1) if there exists an L*-
moderate regularisation (m; ). of the coefficient m such that (ug)e
solves the regularized problem

02U (t, X)+ (= A)ug (t, X)+me (X)ue (t,x) =0, (t,x)e(0, T]xRY,
Ue (0,X) = up(x), dute (0,x) = uy (x), X eRY,
(2.11)

for all £ € (0, 1], and is C'-moderate.

Theorem 2. Assume that the regularisation (mg)e of the coefficient
m satisfies the moderateness condition (2.10). Then the Cauchy prob-
lem (2.1) has a very weak solution.
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Proof of Theorem 2.. Since uy and u; are smooth enough, using
the moderateness Assumption (2.10) and the energy estimate (2.2),
we arrive at

llug || < Ce~Mor2,

where Np is from (2.10), which means that (ug), is C!-
moderate. O

2.2. Uniqueness

The uniqueness of the very weak solution is proved in the sense
of the following definition.

Definition 3. We say that the Cauchy problem (2.1) has a
unique very weak solution, if for all families of regularisations
(mg)e and (Mg), of the coefficient m, satisfying ||mes — Mg||j <
Cee® for all k> 0, it follows that

lue (t, ) — e (t, )2 < Cye

for all N > 0, for all t € [0, T], where (ug), and (ii¢)c are the fam-
ilies of solutions corresponding to (mg). and (i), respectively.

Theorem 3. Let T > 0. Assume that m > 0 in the sense that its reg-
ularisations as functions are non-negative. Suppose that (ug,uq) €
H*(R?) x [2(R?). Then, the very weak solution to the Cauchy prob-
lem (2.1) is unique.

Proof of Theorem 3.. Let (ug). and (ii;). be very weak so-
lutions to the Cauchy problem (2.1) corresponding to the co-
efficients (mg). and (/M;) and assume that |mg — Mg/~ <
Ceek for all k> 0. Let us denote by Ue (£, X) := ug (t, X) — fie (£, x),
then, U satisfies the equation

{azus(mo + (=AU (£, X) + Me (U (£, X) = fo(t, %),

U(O, X) = O, 3[Ua (O, X) = O’ (2]2)

with fe (t,x) = (e (x) — me (x))ie (t, x). Using Duhamel’s principle,
U is given by Ug (x,t) = f(g Ve (x,t —s;s)ds, where V¢ (x,t;s) solves
the problem

Ve (%, t;5) + (—=A)*Ve (%, t55) + me (X)Ve (%, t;5) =0,
Ve(x,0;5) =0, 0Ve(x,0;5) = fe (s, x).

Taking U, in L?-norm and using (2.2) to get estimate for V., we
arrive at

T T
MU (2 O)lle < C(1 4 [melio)’? fo 1fe(s. ) l2ds

T
1 ~ ~
< C(1+ M) ? [l — me 1 /0 iz . ) 2ds.

We have that ||me — g ||« < Gee® for all k > 0, the net (mg), is
moderate by assumption and (ii; ). is moderate as a very weak so-
lution to the Cauchy problem (2.1). Then, for all N > 0, we obtain

U (. Ol = llue (£, ) = de (£, ) 2 < 8"

Thus, the very weak solution is unique. O
2.3. Consistency

We want to prove that in the case when a classical solution
exists for the Cauchy problem (2.1) as in Lemma 1, the very weak
solution recaptures the classical one.

Theorem 4. Let (ug,u;) € HY(RY) x [2(RY). Assume that me
L= (RY) is non-negative and, let us consider the Cauchy problem
e (£, %) + (= A)%u(t, x) + mx)u(t,x) =0, (t,x) e (0,T] x R4,
u(0,x) = up(x), u (0,x) = uy (x), xeRI.
(2.13)
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Let (ug)s be a very weak solution of (2.13). Then for any regularising
family mg = mx e, for any ¥ € C°, ¥ >0, [ =1, the net (ug)e
converges to the classical solution of the Cauchy problem (2.13) in L2
as & — 0.

Proof of Theorem 4.. The classical solution satisfies

ug (£, x) + (—A)%u(t, x) + m(x)u(t,x) =0, (t,x) € (0,T] x R,
u(0,x) = ug(x), ug(0,X) = uy (x), xeRL

For the very weak solution, there is a representation (ug)e such
that

02ug (£, X)+ (= A)%ug (t, x)+mg (X)ug (£, X)=0, (t,x)e(0, T]xRY,
g (0, x) = ug(x), 0rue (0, X) = ug(x), xeRY.

0.02

=0
0.018 1

0.016
0.014 -
0.012 -

0.01

0.006
0.004

0.002 -

—casel

35 36 37 38 39 4
X
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Taking the difference of the above equations, we get

0F u—ug) (t, X)+(—A)*(u—ue) (t, X)+me (x) (u—ue ) (t, X)=n (t, X),
(Uu—1ug)(0,x) =0, 9 (u—1ug)0,x)=0, xeR

where g (t,x) = (m(x) — mg(x))u(t,x). Let us denote by
We(t,x) := (u—1ug)(t,x). Once again, using Duhamel’s princi-
ple, W, is given by We (x,t) = [y Ve (x,t —s;5)ds, where Ve (x,t;s)
solves the problem

Ve (%, t;5) + (—=A)Ve (%, t55) + me (X)Ve (%, t;5) =0,
Ve(x,0;5) =0, 0Ve(x,0;5) = (s, x).

x104
—case 1
case 2
3r case 3|
251
2k
>

151
1k
05

39.2 394 396 398 40 402 404 406 408 4
X

x10% t=10.6

—case 1| |
case 2
case 3

3t

375 38 385 39 395 40 405 41 415

X

Fig. 1. In these plots, we analyse behaviours of the solutions of the Eq. (3.1) in the cases of different mass terms. In the upper-left plot, the graphic of the initial function ug
is given. In the further plots, we compare the replacement function u at t = 8.8,10.2,10.6, 11.0, 12.0 for ¢ = 0.05 in the three cases of the mass term, which are described
below.
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We have that ||m — mg||;« — 0 as & — 0. Taking the L2-norm for
W; and using the energy estimate (2.2), we get

IWe (.O)llz < fy IV (ot =55 || odls

1/2
< C(1+ Imell=)" L2

T
llm —me | 2" fo llucs, ) ll2ds.
Since ||mg||;~ <C it follows that (ug)e converges to u in L% as
e—0. O

3. Numerical experiments

In this Section, we do some numerical experiments. We note
that in the case when the mass m depends only on the parameter
t, the simulations were done in [35]. Let us analyse our problem by
regularising a distributional mass term m(x) by a parameter &. We
define mg (x) := (mx* ¢¢)(x), as the convolution with the mollifier

cexp (ﬁ) x| <1,
0, x| = 1,

@e (x) = L(x/€), where ¢ (x) = with ¢ ~

2.2523 to have [ @(x)dx = 1. Then, instead of (2.1) we consider

the regularised I;roblem

02ue (t,x) — 02u, (t,X) + me (X)ue (£, x) =0, (t,x) € (0, T] x R,
3.1)

with the initial data u. (0, x) = ug(x) and o:u, (0, x) = uq(x), for all
x € R. Here, we put

_ JEXP (m) |x—50] < 0.5,
o) {0’ |x — 50| > 0.5,

and uq(x) = 0. Note that suppug c [49.5, 50.5].
For m we consider the following cases, with § denoting the
standard Dirac’s delta-distribution:

Case 1: m(x) = 0 with m,(x) =0;

Case 2: m(x) = §(x — 40) with mg (x) = @ (x — 40);

Case 3: m(x) = §(x —40) x §(x — 40). Here, we understand mg(x)
as Mg (X) = (¢e (x—40))2.

In Fig. 1, we analyse behaviours of the solutions to the
Eq. (3.1) with the initial function uy (given in the upper-left
plot) in the cases of different mass terms. The further plots
of Fig. 1 are comparing the replacement function u at t=
8.8,10.2,10.6,11.0, 12.0 for ¢ = 0.05 in the following three cases:
Case 1 is corresponding to the mass term m is equal to zero; Case
2 is corresponding to the case when the mass term m is like a
S-function; Case 3 is corresponding to the mass term m is like a
square of the §-function.

By analysing Fig. 1, we see that a delta-function mass term af-
fects less on the behaviour of the solution of (3.1) compared to
the square delta-function like mass term by reflecting some waves
in the opposite direction. In the upper-right plot and in the lower
plots of Fig. 1, we observe that the replacement function u is al-
most fully reflected in the square delta-function like mass term
case. At t = 8.8 we see that the yellow coloured wave is starting
to settle and, from t = 10.2 is moving in opposite direction. We
call the last phenomena, a “wall effect”.

All numerical computations are made in C++ by using the
sweep method. In above numerical simulations, we use the Mat-
lab R2018b. For all simulations we take At = 0.2, Ax = 0.01.

4. Conclusion

The analysis conducted in this article shows that numerical
methods work well in situations where a rigorous mathematical
formulation of the problem is difficult in the framework of the
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classical theory of distributions. The concept of very weak solu-
tions eliminates this difficulty in the case of the terms with mul-
tiplication of distributions. In contrast with the framework of the
Colombeau algebras (see [34]) where the consistency with classi-
cal solutions maybe lost, the concept of very weak solutions which
depends heavily on the equation under consideration is consistent
with classical theory. In particular, in the Klein-Gordon equation
case, we see that a delta-function mass term affects less on the be-
haviour of the waves compared to the square of the delta-function
case, the latter causing a so-called “wall effect”.

Numerical experiments have shown that the concept of very
weak solutions is very suitable for numerical modelling. In addi-
tion, using the theory of very weak solutions, we can talk about
the uniqueness of numerical solutions of differential equations
with strongly singular coefficients in an appropriate sense.

Essentially, the present work can be considered as a generaliza-
tion of the study of the Klein-Gordon equation by introducing the
fractional Laplacian instead of the classical one and by considering
a spatially dependent mass. Moreover, we are treating the case of
singular masses which has been less investigated in the literature.
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