ELSEVIER

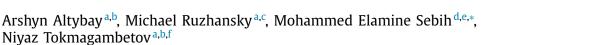
Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Fractional Klein-Gordon equation with singular mass*



- ^a Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium
- ^b Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
- ^c School of Mathematical Sciences, Queen Mary University of London, United Kingdom
- ^d Laboratory of Analysis and Control of Partial Differential Equations, Djillali Liabes University, Sidi Bel Abbes, Algeria
- ^e Laboratory of Geomatics, Ecology and Environment, University Mustapha Stambouli of Mascara, Algeria
- ^f Al-Farabi Kazakh National University, Almaty, Kazakhstan

Article history: Received 14 July 2020 Revised 4 December 2020 Accepted 10 December 2020

2010 MSC: 35L81 35L05 35D30 35A35

Keywords:
Fractional wave equation
Cauchy problem
Weak solution
Singular mass
Very weak solution
Regularisation
Numerical analysis

ABSTRACT

We consider a space-fractional wave equation with a singular mass term depending on the position and prove that it is very weak well-posed. The uniqueness is proved in some appropriate sense. Moreover, we prove the consistency of the very weak solution with classical solutions when they exist. In order to study the behaviour of the very weak solution near the singularities of the coefficient, some numerical experiments are conducted where the appearance of a wall effect for the singular masses of the strength of δ^2 is observed.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we investigate the Cauchy problem

$$\begin{cases} u_{tt}(t,x) + (-\Delta)^{\alpha} u(t,x) + m(x) u(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u(0,x) = u_0(x), & u_t(0,x) = u_1(x), & x \in \mathbb{R}^d, \end{cases}$$
(1.1)

E-mail addresses: sebihmed@gmail.com (M.E. Sebih), niyaz.tokmagambetov@gmail.com (N. Tokmagambetov).

where the spatially dependent coefficient m indicates the mass and the differential operator $(-\Delta)^{\alpha}$ stands for the fractional Laplacian. When $\alpha=1$ and the mass is constant, the equation in (1.1) reduces to the well known Klein-Gordon equation which plays a very important role in modelling many problems in classical and quantum mechanics, solitons and condensed matter physics.

Because of the non-local nature of the fractional derivatives, the fractional generalization of partial differential equations have been found to be very accurate to model real-world problems (see for instance [1–5]), while in the near past, they were thought to be the subject of the pure mathematics. Consequently, considerable attention has been given to the solution of fractional partial differential equations of physical interest. An important one of these equations is the fractional Klein-Gordon equation which has been generalized along two lines: one is to include a position dependent mass and the second is to use fractional derivatives instead of integer order derivatives. In the present paper, a space-fractional generalization of the Klein-Gordon equation with a position depen-

^{*} This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058069) and by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. Michael Ruzhansky was supported in parts by the EPSRC Grant EP/R003025/1. Arshyn Altybay was supported in parts by the MESRK Grant AP08052028 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan. Mohammed Sebih was supported by the Algerian Scholarship P.N.E. 2018/2019 during his visit to the University of Stuttgart and Ghent University. Also, Mohammed Sebih thanks Professor Jens Wirth and Professor Michael Ruzhansky for their warm hospitality.

^{*} Corresponding author at: Laboratory of Geomatics, Ecology and Environment, University Mustapha Stambouli of Mascara, Algeria.

dent mass is considered by replacing the classical Laplacian by the fractional one

The study of analytical and numerical solutions of the space and/or time-fractional Klein-Gordon equation has been investigated considerably in the last years by many authors, we cite for instance [6-18] to mention only few of many recent publications. We also cite [19–22] where the authors consider the case when the mass term depends on the position and we refer to [23,24] where the fractional Laplacian is introduced. Our aim in this work is to contribute to the study of the well-posedness of the Cauchy problem (1.1) where we allow the spatially dependent coefficient m to be singular. This needs to give a meaningful notion of solution, since in the case of distributional data, the multiplication in the equation in (1.1) doesn't make sense (see [25]) and thus the problem can not be formulated. In this context, the authors in [26] introduced the concept of very weak solutions to the study of second order hyperbolic equations with irregular coefficients and was later applied in [27-29] for different physical models. We want here to apply it for our considered model in order to show its wide applicability. We note here that our intention to consider irregular coefficients is physically motivated by the fact that in the microscopic scale, e.g. in the theory of fluids, the mass behaves like distribu-

As mentioned above we want to study the well-posedness in the very weak sense of the Cauchy problem (1.1). The uniqueness is proved in an appropriate sense. Moreover, we prove the consistency of the very weak solution with the classical ones when they exist. The mass coefficient is spatially dependent, it is our task to do numerical experiments in order to study the behaviour of the very weak solution near the singularities of the coefficient.

The leading objective of the present investigation is to contribute to the study of the well-posedness of the the space-fractional Klein-Gordon equation with a singular mass term using the recently introduced concept of very weak solutions. The advantage in using this concept is that we are allowed to consider coefficients with strong singularities, e.g. the Dirac delta function and its powers. Another aim is to show that the concept is easy to use in applications.

2. Main results

For $\alpha>0$ and $d\in\mathbb{N},$ we investigate the Cauchy problem for the fractional Klein-Gordon equation

$$\begin{cases} u_{tt}(t,x) + (-\Delta)^{\alpha} u(t,x) + m(x) u(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u(0,x) = u_0(x), & u_t(0,x) = u_1(x), & x \in \mathbb{R}^d. \end{cases}$$

(2.1)

Here, the function m is supposed to be non-negative and singular. In the regular situation, i.e. in the case when the coefficient m is a regular function we have the following lemma.

To start with, let us define some notions and notations that we use throughout this paper. Firstly, the notation $f\lesssim g$ means that there exists a positive constant C such that $f\leq Cg$. Secondly, the fractional Sobolev space $H^\alpha(\mathbb{R}^d)$ is defined as follows: $H^\alpha(\mathbb{R}^d)=\left\{u\in L^2(\mathbb{R}^d):\|u\|_{H^\alpha}<+\infty\right\}$, where $\|u\|_{H^\alpha}=\|u\|_{L^2}+\|(-\Delta)^{\frac{\alpha}{2}}u\|_{L^2}$ and by $(-\Delta)^\alpha$ we mean the standard definition of the fractional Laplacian in terms of the Fourier transform, that is, $(-\Delta)^\alpha u=\mathcal{F}^{-1}(|\xi|^{2\alpha}(\mathcal{F}u))$ for all $\xi\in\mathbb{R}^d$. We refer to [31] and [32] for more details and alternative definitions of the fractional Laplacian and the fractional Sobolev spaces.

We will also use the following notation:

$$||u(t,\cdot)|| := ||u(t,\cdot)||_{H^{\alpha}} + ||\partial_t u(t,\cdot)||_{L^2}.$$

Lemma 1. Let $m \in L^{\infty}(\mathbb{R}^d)$ and $m \ge 0$. Suppose that $u_0 \in H^{\alpha}(\mathbb{R}^d)$ and $u_1 \in L^2(\mathbb{R}^d)$. Then, there is a unique solution

 $u \in C([0,T]; H^{\alpha}(\mathbb{R}^d)) \cap C^1([0,T]; L^2(\mathbb{R}^d))$ to (2.1), and it satisfies the estimate

$$||u(t,\cdot)||^2 \lesssim (1+||m||_{L^{\infty}}) [||u_1||_{l^2}^2 + ||u_0||_{H^{\alpha}}^2].$$
 (2.2)

Proof of Lemma 1.. Multiplying the Eq. (2.1) on both sides by u_t and integrating, we get

$$Re\langle \partial_t^2 u(t,\cdot), \partial_t u(t,\cdot) \rangle_{L^2} + Re\langle (-\Delta)^{\alpha} u(t,\cdot), \partial_t u(t,\cdot) \rangle_{L^2} + Re\langle m(\cdot) u(t,\cdot), \partial_t u(t,\cdot) \rangle_{L^2} = 0,$$
(2.3)

where $\langle \cdot, \cdot \rangle_{L^2}$ is the inner product of $L^2(\mathbb{R}^d)$.

Easy calculations show that

$$\operatorname{Re}\langle \partial_t^2 u(t,\cdot), \partial_t u(t,\cdot) \rangle_{L^2} = \frac{1}{2} \partial_t \langle \partial_t u(t,\cdot), \partial_t u(t,\cdot) \rangle_{L^2},$$

$$\textit{Re}\langle (-\Delta)^{\alpha}u(t,\cdot), \partial_{t}u(t,\cdot)\rangle_{L^{2}} = \frac{1}{2}\partial_{t}\langle (-\Delta)^{\frac{\alpha}{2}}u(t,\cdot), (-\Delta)^{\frac{\alpha}{2}}u(t,\cdot)\rangle_{L^{2}},$$

and

$$Re\langle m(\cdot)u(t,\cdot),\partial_t u(t,\cdot)\rangle_{L^2} = \frac{1}{2}\partial_t\langle m^{\frac{1}{2}}(\cdot)u(t,\cdot),m^{\frac{1}{2}}(\cdot)u(t,\cdot)\rangle_{L^2}.$$

Let us denote by

$$E(t) := \|\partial_t u(t,\cdot)\|_{L^2}^2 + \|(-\Delta)^{\frac{\alpha}{2}} u(t,\cdot)\|_{L^2}^2 + \|m^{\frac{1}{2}}(\cdot)u(t,\cdot)\|_{L^2}^2,$$

the energy functional of the system (2.1). From (2.3) it follows that $\partial_t E(t)=0$, and thus E(t)=E(0). By taking in consideration that $\|m^{\frac{1}{2}}\,u_0\|_{L^2}^2$ can be estimated by $\|m^{\frac{1}{2}}\,u_0\|_{L^2}^2 \leq \|m\,\|_{L^\infty}\|u_0\|_{L^2}^2$, it follows that

$$\|\partial_t u(t,\cdot)\|_{L^2}^2 \lesssim \left(\|u_1\|_{L^2}^2 + \|(-\Delta)^{\frac{\alpha}{2}} u_0\|_{L^2}^2 + \|m\|_{L^{\infty}} \|u_0\|_{L^2}^2\right), \quad (2.4)$$

$$\|(-\Delta)^{\frac{\alpha}{2}}u(t,\cdot)\|_{L^{2}}^{2} \lesssim (\|u_{1}\|_{L^{2}}^{2} + \|(-\Delta)^{\frac{\alpha}{2}}u_{0}\|_{L^{2}}^{2} + \|m\|_{L^{\infty}}\|u_{0}\|_{L^{2}}^{2}), \quad (2.5)$$

$$\|m^{\frac{1}{2}}(\cdot)u(t,\cdot)\|_{L^{2}}^{2} \lesssim (\|u_{1}\|_{L^{2}}^{2} + \|(-\Delta)^{\frac{\alpha}{2}}u_{0}\|_{L^{2}}^{2} + \|m\|_{L^{\infty}}\|u_{0}\|_{L^{2}}^{2}).$$
 (2.6)

Hence, the desired estimates for $\partial_t u(t,\cdot)$ and $(-\Delta)^{\frac{\alpha}{2}}u(t,\cdot)$ are proved. Let us now estimate u. Applying the Fourier transform to (2.1), the problem can be rewritten as a second order ordinary differential equation

$$\hat{u}_{tt}(t,\xi) + |\xi|^{2\alpha} \hat{u}(t,\xi) = \hat{f}(t,\xi),$$
 (2.7)

with the initial conditions $\hat{u}(0,\xi) = \hat{u}_0(\xi)$ and $\hat{u}_t(0,\xi) = \hat{u}_1(\xi)$. Here \hat{f} , \hat{u} , denote the Fourier transform of f and u in the spacial variable and f(t,x) := -m(x)u(t,x). We note that in (2.7), we see \hat{f} as a source term.

By solving first the homogeneous equation and by application of Duhamel's principle (see, e.g. [33]), we get the following representation of the solution

$$\hat{u}(t,\xi) = \cos(t|\xi|^{\alpha})\hat{u}_{0}(\xi) + \frac{\sin(t|\xi|^{\alpha})}{|\xi|^{\alpha}}\hat{u}_{1}(\xi) + \int_{0}^{t} \frac{\sin((t-s)|\xi|^{\alpha})}{|\xi|^{\alpha}}\hat{f}(s,\xi)ds.$$
(2.8)

Taking the L^2 norm in (2.8) and using the following estimates: 1) $|\cos(t|\xi|^{\alpha})| \le 1$, for $t \in [0,T]$ and $\xi \in \mathbb{R}^d$, 2) $|\sin(t|\xi|^{\alpha})| \le 1$, for large frequencies and $t \in [0,T]$ and, 3) $|\sin(t|\xi|^{\alpha})| \le t|\xi|^{\alpha} \le T|\xi|^{\alpha}$, for small frequencies and $t \in [0,T]$, we get that

$$\|\hat{u}(t,\cdot)\|_{L^{2}}^{2} \lesssim \|\hat{u}_{0}\|_{L^{2}}^{2} + \|\hat{u}_{1}\|_{L^{2}}^{2} + \int_{0}^{t} \|\hat{f}(s,\cdot)\|_{L^{2}}^{2} ds.$$

By Parseval-Plancherel formula we arrive at

$$\|u(t,\cdot)\|_{L^2}^2 \lesssim \|u_0\|_{L^2}^2 + \|u_1\|_{L^2}^2 + \int_0^T \|m(\cdot)u(s,\cdot)\|_{L^2}^2 ds.$$

Using the estimate (2.6) and taking in consideration that the last term in the above estimate can be estimated by $\|m(\cdot)u(t,\cdot)\|_{L^2} \le \|m\|_{l^\infty}^{\frac{1}{2}} \|m^{\frac{1}{2}}u(t,\cdot)\|_{l^2}$, we get

$$||u(t,\cdot)||_{L^{2}}^{2} \lesssim (1+||m||_{L^{\infty}})[||u_{0}||_{H^{\alpha}}^{2}+||u_{1}||_{L^{2}}^{2}].$$
 (2.9)

The estimate (2.2) follows by summing the estimates (2.4), (2.5) and (2.9), ending the proof. \Box

2.1. Very weak solutions: existence

Here, we consider an irregular case when the mass term m of the Eq. (2.1) has strong singularities, namely, δ -function or " δ^2 -function" like behaviours. In what follows, we will understand a multiplication of distributions in the sense of the Colombeau algebra [34].

Now we introduce a notion of the very weak solution to the Cauchy problem (2.1) and prove the existence result. We start by regularising the coefficient m using a suitable mollifier ψ generating families of smooth functions $(m_{\varepsilon})_{\varepsilon}$, namely, $m_{\varepsilon}(x) = m * \psi_{\varepsilon}(x)$, where $\psi_{\varepsilon}(x) = \varepsilon^{-d}\psi(x/\varepsilon)$ and $\varepsilon \in (0,1]$. The function ψ is a Friedrichs-mollifier, i.e. $\psi \in C_0^{\infty}(\mathbb{R}^d)$, $\psi \geq 0$ and $\int \psi = 1$.

Assumption 1. We make the following assumption on the regularisation $(m_{\varepsilon})_{\varepsilon}$ of the coefficient m: there exist $N_0 \in \mathbb{N}_0$ and C > 0 such that

$$||m_{\varepsilon}||_{L^{\infty}} \le C\varepsilon^{-N_0}, \tag{2.10}$$

for all $\varepsilon \in (0, 1]$.

We note that by the structure theorems of distributions, such assumption is natural and is satisfied, e.g, for $m \in \mathcal{D}'$. Let us give some examples.

Example 1. Let $m(x) = \delta_0(x)$. Then, we have $m_{\varepsilon}(x) = m * \psi_{\varepsilon}(x) = \varepsilon^{-d} \psi(\varepsilon^{-1}x) \le C\varepsilon^{-d}$. Moreover, for $m(x) = \delta_0^2(x)$, one can define $m_{\varepsilon}(x) = \varepsilon^{-2d} \psi^2(\varepsilon^{-1}x) \le C\varepsilon^{-2d}$.

Definition 1 (Moderateness).

(i) A net of functions $(g_{\varepsilon})_{\varepsilon}$ is said to be L^{∞} -moderate, if there exist $N \in \mathbb{N}_0$ and c > 0 such that

$$\|\mathbf{g}_{\varepsilon}\|_{I^{\infty}} \leq c\varepsilon^{-N}$$
.

(ii) A net of functions $(u_{\varepsilon})_{\varepsilon}$ from $C([0,T];H^{\alpha})\cap C^{1}([0,T];L^{2})$ is said to be C^{1} -moderate, if there exist $N\in\mathbb{N}_{0}$ and c>0 such that

$$\sup_{t\in[0,T]}\|u_{\varepsilon}(t,\cdot)\|\leq c\varepsilon^{-N}.$$

Remark 1. By the Assumption (2.10), m_{ε} is L^{∞} -moderate in the sense of the last definition.

Definition 2 (Very Weak Solution). Let $(u_0,u_1)\in H^\alpha(\mathbb{R}^d)\times L^2(\mathbb{R}^d)$. Then the net $(u_\varepsilon)_\varepsilon\in C([0,T];H^\alpha(\mathbb{R}^d))\cap C^1([0,T];L^2(\mathbb{R}^d))$ is a very weak solution to the Cauchy problem (2.1) if there exists an L^∞ -moderate regularisation $(m_\varepsilon)_\varepsilon$ of the coefficient m such that $(u_\varepsilon)_\varepsilon$ solves the regularized problem

$$\begin{cases} \partial_t^2 u_\varepsilon(t,x) + (-\Delta)^\alpha u_\varepsilon(t,x) + m_\varepsilon(x) u_\varepsilon(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u_\varepsilon(0,x) = u_0(x), & \partial_t u_\varepsilon(0,x) = u_1(x), & x \in \mathbb{R}^d, \end{cases}$$

(2.11)

for all $\varepsilon \in (0, 1]$, and is C^1 -moderate.

Theorem 2. Assume that the regularisation $(m_{\varepsilon})_{\varepsilon}$ of the coefficient m satisfies the moderateness condition (2.10). Then the Cauchy problem (2.1) has a very weak solution.

Proof of Theorem 2.. Since u_0 and u_1 are smooth enough, using the moderateness Assumption (2.10) and the energy estimate (2.2), we arrive at

$$||u_{\varepsilon}|| \leq C\varepsilon^{-N_0/2}$$
,

where N_0 is from (2.10), which means that $(u_\varepsilon)_\varepsilon$ is C^1 -moderate. \square

2.2. Uniqueness

The uniqueness of the very weak solution is proved in the sense of the following definition.

Definition 3. We say that the Cauchy problem (2.1) has a unique very weak solution, if for all families of regularisations $(m_{\varepsilon})_{\varepsilon}$ and $(\tilde{m}_{\varepsilon})_{\varepsilon}$, of the coefficient m, satisfying $\|m_{\varepsilon} - \tilde{m}_{\varepsilon}\|_{L^{\infty}} \le C_k \varepsilon^k$ for all k > 0, it follows that

$$\|u_{\varepsilon}(t,\cdot)-\tilde{u}_{\varepsilon}(t,\cdot)\|_{L^{2}}\leq C_{N}\varepsilon^{N}$$

for all N > 0, for all $t \in [0, T]$, where $(u_{\varepsilon})_{\varepsilon}$ and $(\tilde{u}_{\varepsilon})_{\varepsilon}$ are the families of solutions corresponding to $(m_{\varepsilon})_{\varepsilon}$ and $(\tilde{m}_{\varepsilon})_{\varepsilon}$, respectively.

Theorem 3. Let T > 0. Assume that $m \ge 0$ in the sense that its regularisations as functions are non-negative. Suppose that $(u_0, u_1) \in H^{\alpha}(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$. Then, the very weak solution to the Cauchy problem (2.1) is unique.

Proof of Theorem 3.. Let $(u_{\varepsilon})_{\varepsilon}$ and $(\tilde{u}_{\varepsilon})_{\varepsilon}$ be very weak solutions to the Cauchy problem (2.1) corresponding to the coefficients $(m_{\varepsilon})_{\varepsilon}$ and $(\tilde{m}_{\varepsilon})_{\varepsilon}$ and assume that $\|m_{\varepsilon}-\tilde{m}_{\varepsilon}\|_{L^{\infty}} \leq C_k \varepsilon^k$ for all k>0. Let us denote by $U_{\varepsilon}(t,x):=u_{\varepsilon}(t,x)-\tilde{u}_{\varepsilon}(t,x)$, then, U satisfies the equation

$$\begin{cases} \partial_t^2 U_{\varepsilon}(t,x) + (-\Delta)^{\alpha} U_{\varepsilon}(t,x) + m_{\varepsilon}(x) U_{\varepsilon}(t,x) = f_{\varepsilon}(t,x), \\ U(0,x) = 0, \quad \partial_t U_{\varepsilon}(0,x) = 0, \end{cases}$$
 (2.12)

with $f_{\varepsilon}(t,x)=(\tilde{m}_{\varepsilon}(x)-m_{\varepsilon}(x))\tilde{u}_{\varepsilon}(t,x)$. Using Duhamel's principle, U_{ε} is given by $U_{\varepsilon}(x,t)=\int_0^t V_{\varepsilon}(x,t-s;s)ds$, where $V_{\varepsilon}(x,t;s)$ solves the problem

$$\begin{cases} \partial_t^2 V_\varepsilon(x,t;s) + (-\Delta)^\alpha V_\varepsilon(x,t;s) + m_\varepsilon(x) V_\varepsilon(x,t;s) = 0, \\ V_\varepsilon(x,0;s) = 0, \ \partial_t V_\varepsilon(x,0;s) = f_\varepsilon(s,x). \end{cases}$$

Taking U_{ε} in L^2 -norm and using (2.2) to get estimate for V_{ε} , we arrive at

$$||U_{\varepsilon}(\cdot,t)||_{L^{2}} \leq C(1+||m_{\varepsilon}||_{L^{\infty}})^{\frac{1}{2}} \int_{0}^{T} ||f_{\varepsilon}(s,\cdot)||_{L^{2}} ds$$

$$\leq C(1+||m_{\varepsilon}||_{L^{\infty}})^{\frac{1}{2}} ||\tilde{m}_{\varepsilon}-m_{\varepsilon}||_{L^{\infty}} \int_{0}^{T} ||\tilde{u}_{\varepsilon}(s,\cdot)||_{L^{2}} ds.$$

We have that $\|m_{\varepsilon} - \tilde{m}_{\varepsilon}\|_{L^{\infty}} \leq C_k \varepsilon^k$ for all k > 0, the net $(m_{\varepsilon})_{\varepsilon}$ is moderate by assumption and $(\tilde{u}_{\varepsilon})_{\varepsilon}$ is moderate as a very weak solution to the Cauchy problem (2.1). Then, for all N > 0, we obtain

$$||U_{\varepsilon}(\cdot,t)||_{L^2} = ||u_{\varepsilon}(t,\cdot) - \tilde{u}_{\varepsilon}(t,\cdot)||_{L^2} \lesssim \varepsilon^N.$$

Thus, the very weak solution is unique. \Box

2.3. Consistency

We want to prove that in the case when a classical solution exists for the Cauchy problem (2.1) as in Lemma 1, the very weak solution recaptures the classical one.

Theorem 4. Let $(u_0, u_1) \in H^{\alpha}(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$. Assume that $m \in L^{\infty}(\mathbb{R}^d)$ is non-negative and, let us consider the Cauchy problem

$$\begin{cases} u_{tt}(t,x) + (-\Delta)^{\alpha} u(t,x) + m(x)u(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u(0,x) = u_0(x), u_t(0,x) = u_1(x), & x \in \mathbb{R}^d. \end{cases}$$

(2.13)

Let $(u_{\varepsilon})_{\varepsilon}$ be a very weak solution of (2.13). Then for any regularising family $m_{\varepsilon}=m*\psi_{\varepsilon}$, for any $\psi\in C_0^{\infty},\ \psi\geq 0,\ \int\psi=1$, the net $(u_{\varepsilon})_{\varepsilon}$ converges to the classical solution of the Cauchy problem (2.13) in L^2 as $\varepsilon\to 0$.

Proof of Theorem 4.. The classical solution satisfies

$$\begin{cases} u_{tt}(t,x) + (-\Delta)^{\alpha} u(t,x) + m(x) u(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u(0,x) = u_0(x), u_t(0,x) = u_1(x), & x \in \mathbb{R}^d. \end{cases}$$

For the very weak solution, there is a representation $(u_{\varepsilon})_{\varepsilon}$ such that

$$\begin{cases} \partial_t^2 u_{\varepsilon}(t,x) + (-\Delta)^{\alpha} u_{\varepsilon}(t,x) + m_{\varepsilon}(x) u_{\varepsilon}(t,x) = 0, & (t,x) \in (0,T] \times \mathbb{R}^d, \\ u_{\varepsilon}(0,x) = u_0(x), & \partial_t u_{\varepsilon}(0,x) = u_1(x), & x \in \mathbb{R}^d. \end{cases}$$

Taking the difference of the above equations, we get

$$\begin{cases} \partial_t^2 (u - u_{\varepsilon})(t, x) + (-\Delta)^{\alpha} (u - u_{\varepsilon})(t, x) + m_{\varepsilon}(x)(u - u_{\varepsilon})(t, x) = \eta_{\varepsilon}(t, x), \\ (u - u_{\varepsilon})(0, x) = 0, \quad \partial_t (u - u_{\varepsilon})(0, x) = 0, \quad x \in \mathbb{R}^d, \end{cases}$$

where $\eta_{\mathcal{E}}(t,x)=(m(x)-m_{\mathcal{E}}(x))u(t,x)$. Let us denote by $W_{\mathcal{E}}(t,x):=(u-u_{\mathcal{E}})(t,x)$. Once again, using Duhamel's principle, $W_{\mathcal{E}}$ is given by $W_{\mathcal{E}}(x,t)=\int_0^t V_{\mathcal{E}}(x,t-s;s)ds$, where $V_{\mathcal{E}}(x,t;s)$ solves the problem

$$\begin{cases} \partial_t^2 V_\varepsilon(x,t;s) + (-\Delta)^\alpha V_\varepsilon(x,t;s) + m_\varepsilon(x) V_\varepsilon(x,t;s) = 0, \\ V_\varepsilon(x,0;s) = 0, \ \partial_t V_\varepsilon(x,0;s) = \eta_\varepsilon(s,x). \end{cases}$$

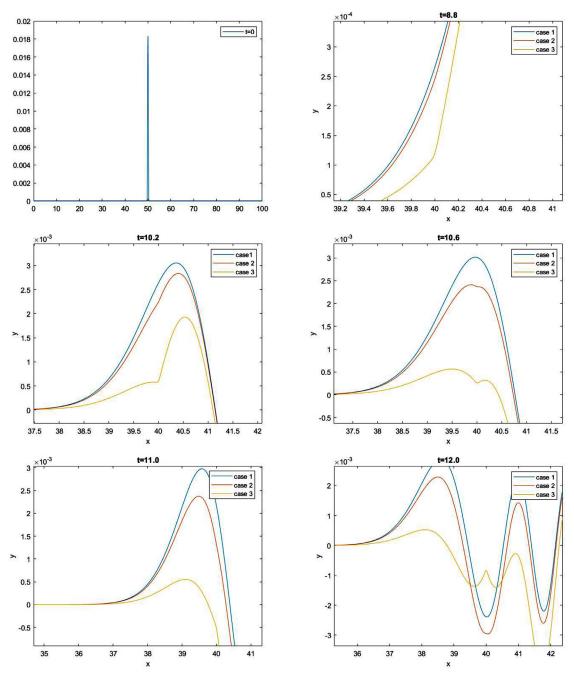


Fig. 1. In these plots, we analyse behaviours of the solutions of the Eq. (3.1) in the cases of different mass terms. In the upper-left plot, the graphic of the initial function u_0 is given. In the further plots, we compare the replacement function u at t = 8.8, 10.2, 10.6, 11.0, 12.0 for $\varepsilon = 0.05$ in the three cases of the mass term, which are described below.

We have that $\|m-m_{\varepsilon}\|_{L^{\infty}} \to 0$ as $\varepsilon \to 0$. Taking the L^2 -norm for W_{ε} and using the energy estimate (2.2), we get

$$\begin{aligned} \|W_{\varepsilon}(\cdot,t)\|_{L^{2}} &\leq \int_{0}^{T} \|V_{\varepsilon}(\cdot,t-s;s)\|_{L^{2}} ds \\ &\leq C(1+\|m_{\varepsilon}\|_{L^{\infty}})^{1/2} \|m-m_{\varepsilon}\|_{L^{\infty}}^{1/2} \int_{0}^{T} \|u(s,\cdot)\|_{L^{2}} ds. \end{aligned}$$

Since $||m_{\varepsilon}||_{L^{\infty}} \leq C$ it follows that $(u_{\varepsilon})_{\varepsilon}$ converges to u in L^2 as

3. Numerical experiments

In this Section, we do some numerical experiments. We note that in the case when the mass m depends only on the parameter t, the simulations were done in [35]. Let us analyse our problem by regularising a distributional mass term m(x) by a parameter ε . We define $m_{\varepsilon}(x) := (m * \varphi_{\varepsilon})(x)$, as the convolution with the mollifier

$$\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon} \varphi(x/\varepsilon), \text{ where } \varphi(x) = \begin{cases} c \exp\left(\frac{1}{x^2 - 1}\right), |x| < 1, \\ 0, |x| \ge 1, \end{cases}$$
 with $c \simeq 2.2523$ to have
$$\int_{-\infty}^{\infty} \varphi(x) dx = 1.$$
 Then, instead of (2.1) we consider

the regularised problem

$$\partial_t^2 u_{\varepsilon}(t,x) - \partial_x^2 u_{\varepsilon}(t,x) + m_{\varepsilon}(x)u_{\varepsilon}(t,x) = 0, \ (t,x) \in (0,T] \times \mathbb{R},$$
(3.1)

with the initial data $u_{\varepsilon}(0,x) = u_0(x)$ and $\partial_t u_{\varepsilon}(0,x) = u_1(x)$, for all $x \in \mathbb{R}$. Here, we put

$$u_0(x) = \begin{cases} \exp\left(\frac{1}{(x-50)^2-0.25}\right), \ |x-50| < 0.5, \\ 0, \ |x-50| \ge 0.5, \end{cases}$$

and $u_1(x) \equiv 0$. Note that supp $u_0 \subset [49.5, 50.5]$.

For m we consider the following cases, with δ denoting the standard Dirac's delta-distribution:

Case 1: m(x) = 0 with $m_{\varepsilon}(x) = 0$;

Case 2: $m(x) = \delta(x - 40)$ with $m_{\varepsilon}(x) = \varphi_{\varepsilon}(x - 40)$;

Case 3: $m(x) = \delta(x - 40) \times \delta(x - 40)$. Here, we understand $m_{\varepsilon}(x)$ as $m_{\varepsilon}(x) = (\varphi_{\varepsilon}(x - 40))^2$.

In Fig. 1, we analyse behaviours of the solutions to the Eq. (3.1) with the initial function u_0 (given in the upper-left plot) in the cases of different mass terms. The further plots of Fig. 1 are comparing the replacement function u at t =8.8, 10.2, 10.6, 11.0, 12.0 for $\varepsilon = 0.05$ in the following three cases: Case 1 is corresponding to the mass term m is equal to zero; Case 2 is corresponding to the case when the mass term m is like a δ -function; Case 3 is corresponding to the mass term m is like a square of the δ -function.

By analysing Fig. 1, we see that a delta-function mass term affects less on the behaviour of the solution of (3.1) compared to the square delta-function like mass term by reflecting some waves in the opposite direction. In the upper-right plot and in the lower plots of Fig. 1, we observe that the replacement function u is almost fully reflected in the square delta-function like mass term case. At t = 8.8 we see that the yellow coloured wave is starting to settle and, from t = 10.2 is moving in opposite direction. We call the last phenomena, a "wall effect".

All numerical computations are made in C++ by using the sweep method. In above numerical simulations, we use the Matlab R2018b. For all simulations we take $\Delta t = 0.2$, $\Delta x = 0.01$.

4. Conclusion

The analysis conducted in this article shows that numerical methods work well in situations where a rigorous mathematical formulation of the problem is difficult in the framework of the

classical theory of distributions. The concept of very weak solutions eliminates this difficulty in the case of the terms with multiplication of distributions. In contrast with the framework of the Colombeau algebras (see [34]) where the consistency with classical solutions maybe lost, the concept of very weak solutions which depends heavily on the equation under consideration is consistent with classical theory. In particular, in the Klein-Gordon equation case, we see that a delta-function mass term affects less on the behaviour of the waves compared to the square of the delta-function case, the latter causing a so-called "wall effect".

Numerical experiments have shown that the concept of very weak solutions is very suitable for numerical modelling. In addition, using the theory of very weak solutions, we can talk about the uniqueness of numerical solutions of differential equations with strongly singular coefficients in an appropriate sense.

Essentially, the present work can be considered as a generalization of the study of the Klein-Gordon equation by introducing the fractional Laplacian instead of the classical one and by considering a spatially dependent mass. Moreover, we are treating the case of singular masses which has been less investigated in the literature.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Arshyn Altybay: Visualization, Methodology. Michael Ruzhansky: Supervision, Investigation. Mohammed Elamine Sebih: Investigation, Writing - review & editing. Niyaz Tokmagambetov: Investigation, Writing - review & editing.

References

- [1] Bagley R, Torvik P. On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 1984;51(2):294-8. doi:10.1115/1.3167615.
- [2] Ma Y. Nonlinear Klein-Gordon equation and its application on the theory of gravitation. Université Pierre et Marie Curie - Paris VI; 2014. Ph.D. thesis. URL: https://tel.archives-ouvertes.fr/tel-01127419
- Miller K, Ross B. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York; 1993. 384 pages
- [4] Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier Science; 1974. 322 pages
- [5] Podlubny I. Fractional differential equations. Elsevier Science; p. 340pages.
- [6] Abuteen E, Freihat A, Al-Smadi M, Khalil H, Khan R. Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J Math Stat 2016;12(1):23-33. doi:10.3844/ jmssp.2016.23.33.
- [7] Culha, Dascioğlu A. Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form. Waves Random Complex Media 2019;29(4):775-90. doi:10.1080/17455030.2018.1473661
- Ege S, Misirli E. Solutions of the space-time fractional foam drainage equation and the fractional Klein-Gordon equation by use of modified Kudryashov method. Int J Res Advent Technol 2014;2(3):384-8.
- Gepreel K, Mohamed M. Analytical approximate solution for nonlinear spacetime fractional Klein Gordon equation. Chin Phys B 2013;22(1):010201. doi:10. 1088/1674-1056/22/1/010201
- [10] Garra R, Orsingher E, Polito F. Fractional Klein-Gordon equation for linear dispersive phenomena: analytical methods and applications. In: ICFDA'14 International conference on fractional differentiation and its applications; 2014, p. 1-6. doi:10.1109/ICFDA.2014.6967381.
- [11] Khader M, Adel M. Analytical and numerical validation for solving the fractional Klein-Gordon equation using the fractional complex transform and variational iteration methods. Nonlinear Eng. 2016;5(3):141-5. doi:10.1515/ nleng-2016-0018.
- [12] Kurulay M. Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method. Adv Differ Equ 2012;187. doi:10.1186/ 1687-1847-2012-187.
- [13] Ran M, Zhang C. Compact difference scheme for a class of fractional-in-space nonlinear damped wave equations in two space dimensions. Comput Math Appl 2016;71(5):1151-62. doi:10.1016/j.camwa.2016.01.019.

- [14] Sweilam N, Khader M, Mahdy A. On the numerical solution for the linear fractional Klein-Gordon equation using legendre pseudospectral method. Int J Pure Appl Math 2013;84(4):307–19. doi:10.12732/ijpam.v84i4.1.
- [15] Singh H, Kumar D, Singh J, Singh C. A reliable numerical algorithm for the fractional Klein-Gordon equation. Eng Trans 2019;67(1):21–34. doi:10.24423/ EngTrans.910.20190214.
- [16] Topsakal M, Taşcan F. Exact travelling wave solutions for space-time fractional Klein-Gordon equation and (2+1)-dimensional time-fractional Zoomeron equation via Auxiliary equation method. Appl Math Nonlinear Sci 2020;5(1):437– 46. doi:10.2478/amns.2020.1.00041.
- [17] Ziane D, Cherif M. A new analytical solution of Klein-Gordon equation with local fractional derivative. Asian-Eur J Math 2020:2150029. doi:10.1142/ S1793557121500297.
- [18] Zhang J, J Wang YZ. Numerical analysis for Klein-Gordon equation with timespace fractional derivatives. Asian-Eur J Math 2020;43(6):3689–700. doi:10. 1002/mma.6147.
- [19] Arda A, Sever R, Tezcan C. Analytical solutions to the Klein–Gordon equation with position-dependent mass for *q*-parameter Pöschl–Teller potential. Chin Phys Lett 2010;27:010306. doi:10.1088/0256-307x/27/1/010306.
- [20] de Souza Dutra A, Jia C. Classes of exact Klein-Gordon equations with spatially dependent masses: regularizing the one-dimensional inversely linear potential. Phys Lett A 2006;352(6):484-7. doi:10.1016/j.physleta.2005.12.048.
 [21] Wang Z, Long Z, Long C, Wang L. Analytical solutions of position-dependent
- [21] Wang Z, Long Z, Long C, Wang L. Analytical solutions of position-dependent mass Klein-Gordon equation for unequal scalar and vector Yukawa potentials. Indian J Phys 2015;89:1059-64. doi:10.1007/s12648-015-0677-9.
- [22] Wang B, Long Z, Long C, Wu S. Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime. Mod Phys Lett A 2018;33(4):1850025. doi:10.1142/S0217732318500256.
- [23] Ghosh U, Banerjee J, Sarkar S, Das S. Fractional Klein–Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter. Pramana J Phys 2018;90(74):1–10. doi:10.1007/s12043-018-1561-x.

- [24] Golmankhaneh A, Golmankhaneh A, Baleanu D. On nonlinear fractional Klein-Gordon equation. Pramana J Phys 2011;91(3):446–51. doi:10.1016/j.sigpro.2010.
- [25] Schwartz L. Sur l'impossibilité de la multiplication des distributions. C R Acad Sci Paris 1954;239:847–8.
- [26] Garetto C, Ruzhansky M. Hyperbolic second order equations with non-regular time dependent coefficients. Arch Ration Mech Anal 2015;217(1):113–54. doi:10.1007/s00205-014-0830-1.
- [27] Garetto C.. On the wave equation with multiplicities and space-dependent irregular coefficients. arXiv preprint arXiv:2004.096572020
 [28] Ruzhansky M, Tokmagambetov N. Wave equation for operators with dis-
- [28] Ruzhansky M, Tokmagambetov N. Wave equation for operators with discrete spectrum and irregular propagation speed. Arch Ration Mech Anal 2017;226:1161–207. doi:10.1007/s00205-017-1152-x.
- [29] Munoz J, Ruzhansky M, Tokmagambetov N. Wave propagation with irregular dissipation and applications to acoustic problems and shallow water. J Math Pures Appl 1993;123:127–47. doi:10.1016/j.matpur.2019.01.012.
- [30] Bakhti B., Interacting fluids in an arbitrary external field, arXiv preprint arXiv: 1702.049052017.
- [31] Nezza ED, Palatucci G, Valdinoci EE. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math 2012;136(5):521–73. doi:10.1016/j.bulsci.2011.12.
- [32] Garofalo N., Fractional thoughts, arXiv preprint arXiv:1712.03347v42018.
- [33] Evans L. Partial differential equations. American Mathematical Society; 1998.
- [34] Oberguggenberger M. Multiplication of distributions and applications to partial differential equations. Pitman research notes in mathematics series; 1992. 302
- [35] Altybay A, Ruzhansky M, Tokmagambetov N. Wave equation with distributional propagation speed and mass term: numerical simulations. Appl Math E-Notes 2019:24:552-62.