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study the behaviour of the very weak solution near the singularities of the coefficient, some numerical 

experiments are conducted where the appearance of a wall effect for the singular masses of the strength 
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. Introduction 

In this work we investigate the Cauchy problem 

u tt (t, x ) + ( −�) αu (t, x ) + m (x ) u (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] ×R 

d , 

u (0 , x ) = u 0 (x ) , u t (0 , x ) = u 1 (x ) , x ∈ R 

d , 
(1.1) 
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here the spatially dependent coefficient m indicates the mass 

nd the differential operator (−�) α stands for the fractional Lapla- 

ian. When α = 1 and the mass is constant, the equation in 

1.1) reduces to the well known Klein-Gordon equation which 

lays a very important role in modelling many problems in clas- 

ical and quantum mechanics, solitons and condensed matter 

hysics. 

Because of the non-local nature of the fractional derivatives, the 

ractional generalization of partial differential equations have been 

ound to be very accurate to model real-world problems (see for 

nstance [1–5] ), while in the near past, they were thought to be 

he subject of the pure mathematics. Consequently, considerable 

ttention has been given to the solution of fractional partial dif- 

erential equations of physical interest. An important one of these 

quations is the fractional Klein-Gordon equation which has been 

eneralized along two lines: one is to include a position depen- 

ent mass and the second is to use fractional derivatives instead 

f integer order derivatives. In the present paper, a space-fractional 

eneralization of the Klein-Gordon equation with a position depen- 
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ent mass is considered by replacing the classical Laplacian by the 

ractional one. 

The study of analytical and numerical solutions of the space 

nd/or time-fractional Klein-Gordon equation has been investi- 

ated considerably in the last years by many authors, we cite for 

nstance [6–18] to mention only few of many recent publications. 

e also cite [19–22] where the authors consider the case when the 

ass term depends on the position and we refer to [23,24] where 

he fractional Laplacian is introduced. Our aim in this work is to 

ontribute to the study of the well-posedness of the Cauchy prob- 

em (1.1) where we allow the spatially dependent coefficient m to 

e singular. This needs to give a meaningful notion of solution, 

ince in the case of distributional data, the multiplication in the 

quation in (1.1) doesn’t make sense (see [25] ) and thus the prob- 

em can not be formulated. In this context, the authors in [26] in- 

roduced the concept of very weak solutions to the study of second 

rder hyperbolic equations with irregular coefficients and was later 

pplied in [27–29] for different physical models. We want here to 

pply it for our considered model in order to show its wide appli- 

ability. We note here that our intention to consider irregular coef- 

cients is physically motivated by the fact that in the microscopic 

cale, e.g. in the theory of fluids, the mass behaves like distribu- 

ions [30] . 

As mentioned above we want to study the well-posedness in 

he very weak sense of the Cauchy problem (1.1) . The uniqueness 

s proved in an appropriate sense. Moreover, we prove the consis- 

ency of the very weak solution with the classical ones when they 

xist. The mass coefficient is spatially dependent, it is our task to 

o numerical experiments in order to study the behaviour of the 

ery weak solution near the singularities of the coefficient. 

The leading objective of the present investigation is to con- 

ribute to the study of the well-posedness of the the space- 

ractional Klein-Gordon equation with a singular mass term using 

he recently introduced concept of very weak solutions. The ad- 

antage in using this concept is that we are allowed to consider 

oefficients with strong singularities, e.g. the Dirac delta function 

nd its powers. Another aim is to show that the concept is easy to 

se in applications. 

. Main results 

For α > 0 and d ∈ N , we investigate the Cauchy problem for the

ractional Klein-Gordon equation 

u tt (t, x ) + (−�) αu (t, x ) + m (x ) u (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] × R 

d , 

u (0 , x ) = u 0 (x ) , u t (0 , x ) = u 1 (x ) , x ∈ R 

d . 

(2.1) 

ere, the function m is supposed to be non-negative and singular. 

n the regular situation, i.e. in the case when the coefficient m is a 

egular function we have the following lemma. 

To start with, let us define some notions and notations that we 

se throughout this paper. Firstly, the notation f � g means that 

here exists a positive constant C such that f ≤ Cg. Secondly, the 

ractional Sobolev space H 

α(R 

d ) is defined as follows : H 

α(R 

d ) =
u ∈ L 2 (R 

d ) : ‖ u ‖ H α < + ∞ 

}
, where ‖ u ‖ H α = ‖ u ‖ L 2 + ‖ (−�) 

α
2 u ‖ L 2 

nd by (−�) α we mean the standard definition of the fractional 

aplacian in terms of the Fourier transform, that is, (−�) αu = 

 

−1 (| ξ | 2 α(Fu )) for all ξ ∈ R 

d . We refer to [31] and [32] for more 

etails and alternative definitions of the fractional Laplacian and 

he fractional Sobolev spaces. 

We will also use the following notation: 

 u ( t, ·) ‖ := ‖ u ( t, ·) ‖ H α + ‖ ∂ t u ( t, ·) ‖ L 2 . 

emma 1. Let m ∈ L ∞ (R 

d ) and m ≥ 0 . Suppose that u 0 ∈
 

α(R 

d ) and u ∈ L 2 (R 

d ) . Then, there is a unique solution
1 

2 
 ∈ C([0 , T ] ; H 

α(R 

d )) ∩ C 1 ([0 , T ] ; L 2 (R 

d )) to (2.1) , and it satisfies the

stimate 

 u ( t, ·) ‖ 

2 � ( 1 + ‖ m ‖ L ∞ ) 
[‖ u 1 ‖ 

2 
L 2 + ‖ u 0 ‖ 

2 
H α

]
. (2.2) 

roof of Lemma 1.. Multiplying the Eq. (2.1) on both sides by u t 
nd integrating, we get 

e 〈 ∂ 2 t u ( t, ·) , ∂ t u ( t, ·) 〉 L 2 + Re 〈 ( −�) 
αu ( t, ·) , ∂ t u ( t, ·) 〉 L 2 

+ Re 〈 m ( ·) u ( t, ·) , ∂ t u ( t, ·) 〉 L 2 = 0 , 
(2.3) 

here 〈·, ·〉 L 2 is the inner product of L 2 (R 

d ) . 

Easy calculations show that 

e 〈 ∂ 2 t u (t, ·) , ∂ t u (t, ·) 〉 L 2 = 

1 

2 

∂ t 〈 ∂ t u (t, ·) , ∂ t u (t, ·) 〉 L 2 , 

e 〈 (−�) αu (t, ·) , ∂ t u (t, ·) 〉 L 2 = 

1 

2 

∂ t 〈 (−�) 
α
2 u (t, ·) , (−�) 

α
2 u (t, ·) 〉 L 2 ,

nd 

e 〈 m (·) u (t, ·) , ∂ t u (t, ·) 〉 L 2 = 

1 

2 

∂ t 〈 m 

1 
2 (·) u (t, ·) , m 

1 
2 (·) u (t, ·) 〉 L 2 . 

et us denote by 

 ( t ) := ‖ ∂ t u ( t, ·) ‖ 

2 
L 2 + ‖ ( −�) 

α
2 u ( t, ·) ‖ 

2 
L 2 + ‖ m 

1 
2 ( ·) u ( t, ·) ‖ 

2 
L 2 , 

he energy functional of the system (2.1) . From (2.3) it follows that 

 t E(t) = 0 , and thus E(t) = E(0) . By taking in consideration that

 m 

1 
2 u 0 ‖ 2 L 2 

can be estimated by ‖ m 

1 
2 u 0 ‖ 2 L 2 

≤ ‖ m ‖ L ∞ ‖ u 0 ‖ 2 L 2 
, it fol-

ows that 

 ∂ t u ( t, ·) ‖ 

2 
L 2 � 

(‖ u 1 ‖ 

2 
L 2 + ‖ ( −�) 

α
2 u 0 ‖ 

2 
L 2 + ‖ m ‖ L ∞ ‖ u 0 ‖ 

2 
L 2 

)
, (2.4) 

 ( −�) 
α
2 u ( t, ·) ‖ 

2 
L 2 � 

(‖ u 1 ‖ 

2 
L 2 + ‖ ( −�) 

α
2 u 0 ‖ 

2 
L 2 + ‖ m ‖ L ∞ ‖ u 0 ‖ 

2 
L 2 

)
, (2.5) 

nd 

 m 

1 
2 ( ·) u ( t, ·) ‖ 

2 
L 2 � 

(‖ u 1 ‖ 

2 
L 2 + ‖ ( −�) 

α
2 u 0 ‖ 

2 
L 2 + ‖ m ‖ L ∞ ‖ u 0 ‖ 

2 
L 2 

)
. (2.6) 

ence, the desired estimates for ∂ t u (t, ·) and (−�) 
α
2 u (t, ·) are

roved. Let us now estimate u . Applying the Fourier transform to 

2.1) , the problem can be rewritten as a second order ordinary dif- 

erential equation 

ˆ 
 tt (t, ξ ) + | ξ | 2 α ˆ u (t, ξ ) = 

ˆ f (t, ξ ) , (2.7) 

ith the initial conditions ˆ u (0 , ξ ) = ˆ u 0 (ξ ) and ˆ u t (0 , ξ ) = ˆ u 1 (ξ ) .

ere ˆ f , ˆ u , denote the Fourier transform of f and u in the spacial 

ariable and f (t, x ) := −m (x ) u (t, x ) . We note that in (2.7) , we see
ˆ f as a source term. 

By solving first the homogeneous equation and by application 

f Duhamel’s principle (see, e.g. [33] ), we get the following repre- 

entation of the solution 

ˆ 
 ( t, ξ ) = cos ( t| ξ | α) ̂  u 0 ( ξ ) + 

sin ( t| ξ | α) 

| ξ | α ˆ u 1 ( ξ ) 

+ 

∫ t 

0 

sin ( ( t − s ) | ξ | α) 

| ξ | α ˆ f ( s, ξ ) ds . 

(2.8) 

aking the L 2 norm in (2.8) and using the following estimates: 1) 

 cos (t| ξ | α) | ≤ 1 , for t ∈ [ 0 , T ] and ξ ∈ R 

d , 2) | sin (t| ξ | α) | ≤ 1 , for

arge frequencies and t ∈ [ 0 , T ] and, 3) | sin (t| ξ | α) | ≤ t| ξ | α ≤ T | ξ | α,

or small frequencies and t ∈ [ 0 , T ] , we get that 

 ̂

 u ( t, ·) ‖ 

2 
L 2 � ‖ ̂

 u 0 ‖ 

2 
L 2 + ‖ ̂

 u 1 ‖ 

2 
L 2 + 

∫ t 

0 

‖ ̂

 f ( s, ·) ‖ 

2 
L 2 ds . 

y Parseval-Plancherel formula we arrive at 

 u ( t, ·) ‖ 

2 
L 2 � ‖ u 0 ‖ 

2 
L 2 + ‖ u 1 ‖ 

2 
L 2 + 

∫ T 

‖ m ( ·) u ( s, ·) ‖ 

2 
L 2 ds . 
0 
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sing the estimate (2.6) and taking in consideration that the last 

erm in the above estimate can be estimated by ‖ m (·) u (t, ·) ‖ L 2 ≤
 m ‖ 1 2 

L ∞ 

‖ m 

1 
2 u (t, ·) ‖ L 2 , we get 

 u ( t, ·) ‖ 

2 
L 2 � ( 1 + ‖ m ‖ L ∞ ) 

[‖ u 0 ‖ 

2 
H α + ‖ u 1 ‖ 

2 
L 2 

]
. (2.9) 

he estimate (2.2) follows by summing the estimates (2.4), 

2.5) and (2.9) , ending the proof. �

.1. Very weak solutions: existence 

Here, we consider an irregular case when the mass term m of 

he Eq. (2.1) has strong singularities, namely, δ-function or “δ2 - 

unction” like behaviours. In what follows, we will understand a 

ultiplication of distributions in the sense of the Colombeau alge- 

ra [34] . 

Now we introduce a notion of the very weak solution to the 

auchy problem (2.1) and prove the existence result. We start by 

egularising the coefficient m using a suitable mollifier ψ gen- 

rating families of smooth functions (m ε ) ε , namely, m ε (x ) = m ∗
 ε (x ) , where ψ ε (x ) = ε −d ψ(x/ε) and ε ∈ ( 0 , 1 ] . The function ψ is

 Friedrichs-mollifier, i.e. ψ ∈ C ∞ 

0 
(R 

d ) , ψ ≥ 0 and 

∫ 
ψ = 1 . 

ssumption 1. We make the following assumption on the regular- 

sation (m ε ) ε of the coefficient m : there exist N 0 ∈ N 0 and C > 0

uch that 

 m ε ‖ L ∞ ≤ Cε −N 0 , (2.10) 

or all ε ∈ (0 , 1] . 

We note that by the structure theorems of distributions, such 

ssumption is natural and is satisfied, e.g, for m ∈ D 

′ . Let us give

ome examples. 

xample 1. Let m (x ) = δ0 (x ) . Then, we have m ε (x ) = m ∗ ψ ε (x ) =
 

−d ψ(ε −1 x ) ≤ Cε −d . Moreover, for m (x ) = δ2 
0 
(x ) , one can define

 ε (x ) = ε −2 d ψ 

2 (ε −1 x ) ≤ Cε −2 d . 

efinition 1 (Moderateness) . 

(i) A net of functions (g ε ) ε is said to be L ∞ -moderate, if there 

exist N ∈ N 0 and c > 0 such that 

‖ g ε ‖ L ∞ ≤ cε −N . 

(ii) A net of functions (u ε ) ε from C([0 , T ] ; H 

α) ∩ C 1 ([0 , T ] ; L 2 ) is

said to be C 1 -moderate, if there exist N ∈ N 0 and c > 0 such

that 

sup 

t∈ [0 ,T ] 
‖ u ε (t, ·) ‖ ≤ cε −N . 

emark 1. By the Assumption (2.10) , m ε is L ∞ -moderate in the 

ense of the last definition. 

efinition 2 (Very Weak Solution) . Let (u 0 , u 1 ) ∈ H 

α(R 

d ) × L 2 (R 

d ) .

hen the net (u ε ) ε ∈ C([0 , T ] ; H 

α(R 

d )) ∩ C 1 ([0 , T ] ; L 2 (R 

d )) is a very

eak solution to the Cauchy problem (2.1) if there exists an L ∞ - 

oderate regularisation (m ε ) ε of the coefficient m such that (u ε ) ε 
olves the regularized problem 

∂ 2 t u ε (t, x ) + (−�) αu ε (t, x ) + m ε (x ) u ε (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] ×R 

d ,

u ε (0 , x ) = u 0 (x ) , ∂ t u ε (0 , x ) = u 1 (x ) , x ∈ R 

d , 

(2.11) 

or all ε ∈ ( 0 , 1 ] , and is C 1 -moderate. 

heorem 2. Assume that the regularisation (m ε ) ε of the coefficient 

 satisfies the moderateness condition (2.10) . Then the Cauchy prob- 

em (2.1) has a very weak solution. 
3 
roof of Theorem 2.. Since u 0 and u 1 are smooth enough, using 

he moderateness Assumption (2.10) and the energy estimate (2.2) , 

e arrive at 

 u ε ‖ ≤ Cε −N 0 / 2 , 

here N 0 is from (2.10) , which means that (u ε ) ε is C 1 -

oderate. �

.2. Uniqueness 

The uniqueness of the very weak solution is proved in the sense 

f the following definition. 

efinition 3. We say that the Cauchy problem (2.1) has a 

nique very weak solution, if for all families of regularisations 

m ε ) ε and ( ̃  m ε ) ε , of the coefficient m, satisfying ‖ m ε − ˜ m ε ‖ L ∞ ≤
 k ε 

k for all k > 0 , it follows that 

 u ε ( t, ·) − ˜ u ε ( t, ·) ‖ L 2 ≤ C N ε 
N 

or all N > 0 , for all t ∈ [0 , T ] , where (u ε ) ε and ( ̃  u ε ) ε are the fam-

lies of solutions corresponding to (m ε ) ε and ( ̃  m ε ) ε , respectively. 

heorem 3. Let T > 0 . Assume that m ≥ 0 in the sense that its reg-

larisations as functions are non-negative. Suppose that (u 0 , u 1 ) ∈ 

 

α(R 

d ) × L 2 (R 

d ) . Then, the very weak solution to the Cauchy prob-

em (2.1) is unique. 

roof of Theorem 3.. Let (u ε ) ε and ( ̃  u ε ) ε be very weak so- 

utions to the Cauchy problem (2.1) corresponding to the co- 

fficients (m ε ) ε and ( ̃  m ε ) ε and assume that ‖ m ε − ˜ m ε ‖ L ∞ ≤
 k ε 

k for all k > 0 . Let us denote by U ε (t, x ) := u ε (t, x ) − ˜ u ε (t, x ) ,

hen, U satisfies the equation 

∂ 2 t U ε (t, x ) + (−�) αU ε (t, x ) + m ε (x ) U ε (t, x ) = f ε (t, x ) , 
U(0 , x ) = 0 , ∂ t U ε (0 , x ) = 0 , 

(2.12) 

ith f ε (t, x ) = ( ̃  m ε (x ) − m ε (x )) ̃  u ε (t, x ) . Using Duhamel’s principle,

 ε is given by U ε (x, t) = 

∫ t 
0 V ε (x, t − s ; s ) ds, where V ε (x, t; s ) solves

he problem 

∂ 2 t V ε (x, t; s ) + (−�) αV ε (x, t; s ) + m ε (x ) V ε (x, t; s ) = 0 , 

V ε (x, 0 ; s ) = 0 , ∂ t V ε (x, 0 ; s ) = f ε (s, x ) . 

aking U ε in L 2 -norm and using (2.2) to get estimate for V ε , we

rrive at 

 U ε ( ·, t ) ‖ L 2 ≤ C ( 1 + ‖ m ε ‖ L ∞ ) 
1 
2 

∫ T 

0 

‖ f ε ( s, ·) ‖ L 2 ds 

≤ C ( 1 + ‖ m ε ‖ L ∞ ) 
1 
2 ‖ ̃

 m ε − m ε ‖ L ∞ 

∫ T 

0 

‖ ̃

 u ε ( s, ·) ‖ L 2 ds . 

e have that ‖ m ε − ˜ m ε ‖ L ∞ ≤ C k ε 
k for all k > 0 , the net (m ε ) ε is

oderate by assumption and ( ̃  u ε ) ε is moderate as a very weak so- 

ution to the Cauchy problem (2.1) . Then, for all N > 0 , we obtain 

 U ε ( ·, t ) ‖ L 2 = ‖ u ε ( t, ·) − ˜ u ε ( t, ·) ‖ L 2 � ε N . 

hus, the very weak solution is unique. �

.3. Consistency 

We want to prove that in the case when a classical solution 

xists for the Cauchy problem (2.1) as in Lemma 1 , the very weak 

olution recaptures the classical one. 

heorem 4. Let (u 0 , u 1 ) ∈ H 

α(R 

d ) × L 2 (R 

d ) . Assume that m ∈
 

∞ (R 

d ) is non-negative and, let us consider the Cauchy problem 

u tt (t, x ) + (−�) αu (t, x ) + m (x ) u (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] × R 

d , 

u (0 , x ) = u 0 (x ) , u t (0 , x ) = u 1 (x ) , x ∈ R 

d . 

(2.13) 
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et (u ε ) ε be a very weak solution of (2.13) . Then for any regularising

amily m ε = m ∗ ψ ε , for any ψ ∈ C ∞ 

0 , ψ ≥ 0 , 
∫ 

ψ = 1 , the net (u ε ) ε 
onverges to the classical solution of the Cauchy problem (2.13) in L 2 

s ε → 0 . 

roof of Theorem 4.. The classical solution satisfies 

u tt (t, x ) + (−�) αu (t, x ) + m (x ) u (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] × R 

d , 

u (0 , x ) = u 0 (x ) , u t (0 , x ) = u 1 (x ) , x ∈ R 

d . 

or the very weak solution, there is a representation (u ε ) ε such 

hat 

∂ 2 t u ε (t, x ) + (−�) αu ε (t, x ) + m ε (x ) u ε (t, x ) = 0 , (t, x ) ∈ ( 0 , T ] ×R 

d , 

u ε (0 , x ) = u 0 (x ) , ∂ t u ε (0 , x ) = u 1 (x ) , x ∈ R 

d . 
ig. 1. In these plots, we analyse behaviours of the solutions of the Eq. (3.1) in the cases 

s given. In the further plots, we compare the replacement function u at t = 8 . 8 , 10 . 2 , 10 .

elow. 

4 
aking the difference of the above equations, we get 

∂ 2 t (u −u ε )(t, x ) + ( −�) α(u −u ε )(t, x ) + m ε (x )(u −u ε )(t, x ) = ηε (t, x ) ,

(u − u ε )(0 , x ) = 0 , ∂ t (u − u ε )(0 , x ) = 0 , x ∈ R 

d , 

here ηε (t, x ) = (m (x ) − m ε (x )) u (t, x ) . Let us denote by

 ε (t, x ) := (u − u ε )(t, x ) . Once again, using Duhamel’s princi-

le, W ε is given by W ε (x, t) = 

∫ t 
0 V ε (x, t − s ; s ) ds, where V ε (x, t; s )

olves the problem 

∂ 2 t V ε (x, t; s ) + (−�) αV ε (x, t; s ) + m ε (x ) V ε (x, t; s ) = 0 , 

V ε (x, 0 ; s ) = 0 , ∂ t V ε (x, 0 ; s ) = ηε (s, x ) . 
of different mass terms. In the upper-left plot, the graphic of the initial function u 0 
 6 , 11 . 0 , 12 . 0 for ε = 0 . 05 in the three cases of the mass term, which are described 
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[

e have that ‖ m − m ε ‖ L ∞ → 0 as ε → 0 . Taking the L 2 -norm for

 ε and using the energy estimate (2.2) , we get 

 W ε ( ·, t ) ‖ L 2 ≤
∫ T 

0 ‖ V ε ( ·, t − s ; s ) ‖ L 2 ds 

≤ C ( 1 + ‖ m ε ‖ L ∞ ) 
1 / 2 ‖ m − m ε ‖ 

1 / 2 
L ∞ 

∫ T 
0 ‖ u ( s, ·) ‖ L 2 ds . 

ince ‖ m ε ‖ L ∞ ≤ C it follows that (u ε ) ε converges to u in L 2 as

 → 0 . �

. Numerical experiments 

In this Section, we do some numerical experiments. We note 

hat in the case when the mass m depends only on the parameter 

, the simulations were done in [35] . Let us analyse our problem by

egularising a distributional mass term m (x ) by a parameter ε. We 

efine m ε (x ) := (m ∗ ϕ ε )(x ) , as the convolution with the mollifier

 ε (x ) = 

1 
ε ϕ(x/ε) , where ϕ(x ) = 

{ 

c exp 

(
1 

x 2 −1 

)
, | x | < 1 , 

0 , | x | ≥ 1 , 
with c 
 

 . 2523 to have 
∞ ∫ 

−∞ 

ϕ(x ) dx = 1 . Then, instead of (2.1) we consider

he regularised problem 

 

2 
t u ε (t, x ) − ∂ 2 x u ε (t, x ) + m ε (x ) u ε (t, x ) = 0 , (t, x ) ∈ (0 , T ] × R , 

(3.1) 

ith the initial data u ε (0 , x ) = u 0 (x ) and ∂ t u ε (0 , x ) = u 1 (x ) , for all

 ∈ R . Here, we put 

 0 (x ) = 

{
exp 

(
1 

(x −50) 2 −0 . 25 

)
, | x − 50 | < 0 . 5 , 

0 , | x − 50 | ≥ 0 . 5 , 

nd u 1 (x ) ≡ 0 . Note that supp u 0 ⊂ [49 . 5 , 50 . 5] . 

For m we consider the following cases, with δ denoting the 

tandard Dirac’s delta-distribution: 

ase 1: m (x ) = 0 with m ε (x ) = 0 ; 

ase 2: m (x ) = δ(x − 40) with m ε (x ) = ϕ ε (x − 40) ; 

ase 3: m (x ) = δ(x − 40) × δ(x − 40) . Here, we understand m ε (x )

as m ε (x ) = ( ϕ ε (x − 40) ) 
2 
. 

In Fig. 1 , we analyse behaviours of the solutions to the 

q. (3.1) with the initial function u 0 (given in the upper-left 

lot) in the cases of different mass terms. The further plots 

f Fig. 1 are comparing the replacement function u at t = 

 . 8 , 10 . 2 , 10 . 6 , 11 . 0 , 12 . 0 for ε = 0 . 05 in the following three cases:

ase 1 is corresponding to the mass term m is equal to zero; Case 

 is corresponding to the case when the mass term m is like a 

-function; Case 3 is corresponding to the mass term m is like a 

quare of the δ-function. 

By analysing Fig. 1 , we see that a delta-function mass term af- 

ects less on the behaviour of the solution of (3.1) compared to 

he square delta-function like mass term by reflecting some waves 

n the opposite direction. In the upper-right plot and in the lower 

lots of Fig. 1 , we observe that the replacement function u is al- 

ost fully reflected in the square delta-function like mass term 

ase. At t = 8 . 8 we see that the yellow coloured wave is starting

o settle and, from t = 10 . 2 is moving in opposite direction. We

all the last phenomena, a “wall effect”. 

All numerical computations are made in C++ by using the 

weep method. In above numerical simulations, we use the Mat- 

ab R2018b. For all simulations we take �t = 0 . 2 , �x = 0 . 01 . 

. Conclusion 

The analysis conducted in this article shows that numerical 

ethods work well in situations where a rigorous mathematical 

ormulation of the problem is difficult in the framework of the 
5 
lassical theory of distributions. The concept of very weak solu- 

ions eliminates this difficulty in the case of the terms with mul- 

iplication of distributions. In contrast with the framework of the 

olombeau algebras (see [34] ) where the consistency with classi- 

al solutions maybe lost, the concept of very weak solutions which 

epends heavily on the equation under consideration is consistent 

ith classical theory. In particular, in the Klein-Gordon equation 

ase, we see that a delta-function mass term affects less on the be- 

aviour of the waves compared to the square of the delta-function 

ase, the latter causing a so-called “wall effect”. 

Numerical experiments have shown that the concept of very 

eak solutions is very suitable for numerical modelling. In addi- 

ion, using the theory of very weak solutions, we can talk about 

he uniqueness of numerical solutions of differential equations 

ith strongly singular coefficients in an appropriate sense. 

Essentially, the present work can be considered as a generaliza- 

ion of the study of the Klein-Gordon equation by introducing the 

ractional Laplacian instead of the classical one and by considering 

 spatially dependent mass. Moreover, we are treating the case of 

ingular masses which has been less investigated in the literature. 
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